How do you find f'(x) using the definition of a derivative for f(x)=sqrt(2x)f(x)=2x?

1 Answer
Oct 6, 2015

f'(x)=1/(sqrt(2x))

Explanation:

f'(x)=lim_(h->0) (f(x+h)-f(x))/h

f'(x)=lim_(h->0) (sqrt(2(x+h))-sqrt(2x))/h*(sqrt(2(x+h))+sqrt(2x))/(sqrt(2(x+h))+sqrt(2x))

f'(x)=lim_(h->0) (2(x+h)-2x)/(h(sqrt(2(x+h))+sqrt(2x)))

f'(x)=lim_(h->0) (2x+2h-2x)/(h(sqrt(2(x+h))+sqrt(2x)))

f'(x)=lim_(h->0) (2h)/(h(sqrt(2(x+h))+sqrt(2x)))

f'(x)=lim_(h->0) 2/(sqrt(2(x+h))+sqrt(2x))

f'(x)=lim_(h->0) 2/(sqrt(2(x+0))+sqrt(2x))

f'(x)=2/(sqrt(2x)+sqrt(2x))

f'(x)=2/(2sqrt(2x))

f'(x)=1/(sqrt(2x))