How do you find f'(x) using the definition of a derivative for f(x)=(x+1)/(x-1) f(x)=x+1x−1?
1 Answer
Apr 16, 2018
We have:
f'(x) = lim_(h->0) (f(x + h) - f(x))/h
f'(x) = lim_(h-> 0) ((x+ h + 1)/(x+ h - 1) - (x + 1)/(x -1))/h
f'(x) = lim_(h->0) ((x+ h + 1)(x -1) - ((x + 1)(x + h - 1)))/(h(x + h - 1)(x - 1))
f'(x) = lim_(h->0) ((x^2 + hx + x - x - h - 1 - (x^2 + xh - x + x + h - 1)))/(h(x + h - 1)(x- 1))
f'(x) = lim_(h->0) (-2h)/(h(x + h - 1)(x - 1))
f'(x) = -2/(x - 1)^2
We woudl have obtained the same answer using the quotient rule.
Hopefully this helps!