How do you find f'(x) using the definition of a derivative for #f(x)= (x^2-1) / (2x-3)#?
1 Answer
Nov 1, 2015
Long divide then use limit definition of derivative to find:
#f'(x) = 1/2 - 5/(2(2x-3)^2)#
Explanation:
Long divide:
...to find...
#f(x) = (x^2-1)/(2x-3)=1/2x+3/4+5/(8x-12)#
Then using the limit definition of derivative:
#f'(x) = lim_(h->0) ((f(x+h) - f(x))/h)#
#=lim_(h->0) ((1/2(x+h)+3/4+5/(8(x+h)-12)) - (1/2x+3/4+5/(8x-12)))/h#
#=lim_(h->0) (1/2h+(5/(8(x+h)-12)-5/(8x-12)))/h#
#=1/2+lim_(h->0) ((5/(8(x+h)-12)-5/(8x-12))/h)#
#=1/2+lim_(h->0) ((5((8x-12)-(8(x+h)-12)))/(h(8(x+h)-12)(8x-12)))#
#=1/2+lim_(h->0) ((-40h)/(h(8(x+h)-12)(8x-12)))#
#=1/2+lim_(h->0) ((-40)/((8(x+h)-12)(8x-12)))#
#=1/2-40/((8x-12)^2)#
#=1/2-40/(16(2x-3)^2)#
#=1/2-5/(2(2x-3)^2)#