How do you find f'(x) using the definition of a derivative for f(x)=x + sqrtx + 7f(x)=x+x+7?

2 Answers
Sep 27, 2015

dy/dx=1+1/(2sqrtx)dydx=1+12x

Explanation:

f(x)=x+sqrtx+7f(x)=x+x+7
dy/dx=1+1/(2sqrtx)dydx=1+12x

Sep 27, 2015

See the explanation.

Explanation:

f'(x)=lim_(h->0) (f(x+h)-f(x))/h

lim_(h->0) (x+h+sqrt(x+h)+7-x-sqrtx-7)/h=

lim_(h->0) (h+sqrt(x+h)-sqrtx)/h=lim_(h->0)(1+(sqrt(x+h)-sqrtx)/h)=

=1+lim_(h->0) (sqrt(x+h)-sqrtx)/h (sqrt(x+h)+sqrtx)/(sqrt(x+h)+sqrtx)=

=1+lim_(h->0) (x+h-x)/(h(sqrt(x+h)+sqrtx))=

=1+lim_(h->0) h/(h(sqrt(x+h)+sqrtx))=1+lim_(h->0) 1/(sqrt(x+h)+sqrtx)

=1+1/(sqrtx+sqrtx)=1+1/(2sqrtx)