f(x) = 1/x^2
f'(x) = lim_{h to 0} (f(h+h) - f(x))/(h)
= lim_{h to 0} 1/h * (1/(x+h)^2 - 1/x^2)
combining fractions:
= lim_{h to 0} 1/h * (x^2- (x+h)^2)/(x^2(x+h)^2)
= lim_{h to 0} 1/h * (x^2- (x^2+2hx + h^2))/(x^2(x+h)^2
= lim_{h to 0} 1/h * (-2hx - h^2)/(x^2(x+h)^2
= lim_{h to 0} (-2x - h)/(x^2(x+h)^2
= lim_{h to 0} (-2x )/(x^2(x+h)^2) + mathcal(O)(h)
= lim_{h to 0} (-2 )/(x(x+h)^2) + mathcal(O)(h)
= (-2 )/(x(x)^2)
= - 2/x^3