How do you find f'(x) using the limit definition given (1/x^2) ?

1 Answer
Jul 5, 2016

= - 2/x^3

Explanation:

f(x) = 1/x^2

f'(x) = lim_{h to 0} (f(h+h) - f(x))/(h)

= lim_{h to 0} 1/h * (1/(x+h)^2 - 1/x^2)

combining fractions:

= lim_{h to 0} 1/h * (x^2- (x+h)^2)/(x^2(x+h)^2)

= lim_{h to 0} 1/h * (x^2- (x^2+2hx + h^2))/(x^2(x+h)^2

= lim_{h to 0} 1/h * (-2hx - h^2)/(x^2(x+h)^2

= lim_{h to 0} (-2x - h)/(x^2(x+h)^2

= lim_{h to 0} (-2x )/(x^2(x+h)^2) + mathcal(O)(h)

= lim_{h to 0} (-2 )/(x(x+h)^2) + mathcal(O)(h)

= (-2 )/(x(x)^2)

= - 2/x^3