How do you find f'(x) using the limit definition given f(x)= 2x^2-xf(x)=2x2x?

1 Answer
Sep 9, 2016

f'(x)=4x-1.

Explanation:

The Defn. : f'(x)=lim_(trarrx)(f(t)-f(x))/(t-x).

Given f(x)=2x^2-x rArr f(t)=2t^2-t.

:. f(t)-f(x)=2t^2-t-2x^2+x=ul(2t^2-2x^2)-ul(t+x)

=2(t^2-x^2)-(t-x)=2(t-x)(t+x)-(t-x)

=(t-x){2(t+x)-1}.

:. (f(t)-f(x))/(t-x)={2(t+x)-1}, if tnex.

Therefore,

f'(x)=lim_(trarrx)(f(t)-f(x))/(t-x)

=lim_(trarrx) {2(t+x)-1},...............[as, trarrx, tnex]

=2(x+x)-1

:. f'(x)=4x-1.

Enjoy Maths.!