Use f'(x) = lim_(hto0)(f(x+h) - f(x))/h
Given: f(x) = -3x^3 + 9x + 4
Then write the expression for f(x + h)
f(x+h) = -3(x+h)^3 + 9(x + h) + 4
f(x+h) = -3(x+h)(x^2 + 2hx + h^2) + 9(x + h) + 4
f(x+h) = -3(x^3 + 2hx^2 + h^2x + hx^2 + 2h^2x + h^2) + 9(x + h) + 4
f(x+h) = -3(x^3 + 3hx^2 + 3h^2x + h^2) + 9(x + h) + 4
f(x+h) = -3x^3 - 9hx^2 - 9h^2x - 9h^2 + 9x + 9h + 4
The above is the simplest form of f(x + h)
Use that form to simplify the numerator:
f(x+h) - f(x) = -3x^2 - 9hx^2 - 9h^2x - 9h^2 + 9x + 9h + 4 + 3x^3 - 9x - 4
f(x+h) - f(x) = -9hx^2 - 9h^2x - 9h^2 + 9h
Remove a common factor, h:
f(x+h) - f(x) = h(-9x^2 - 9hx - 9h + 9)
Substitute the simplified numerator into the limit:
f'(x) = lim_(hto0)(h(-9x^2 - 9hx - 9h + 9))/h
h/h becomes 1:
f'(x) = lim_(hto0)-9x^2 - 9hx - 9h + 9
Let h to 0
f'(x) = -9x^2 + 9