How do you find f'(x) using the limit definition given f(x) = -3 x^3 + 9 x + 4?

1 Answer
Jan 9, 2017

Use f'(x) = lim_(hto0)(f(x+h) - f(x))/h
Write the simplest form of f(x+h)
Subtract f(x) from that.
A common factor of h/h will cancel.
Let h to 0

Explanation:

Use f'(x) = lim_(hto0)(f(x+h) - f(x))/h

Given: f(x) = -3x^3 + 9x + 4

Then write the expression for f(x + h)

f(x+h) = -3(x+h)^3 + 9(x + h) + 4

f(x+h) = -3(x+h)(x^2 + 2hx + h^2) + 9(x + h) + 4

f(x+h) = -3(x^3 + 2hx^2 + h^2x + hx^2 + 2h^2x + h^2) + 9(x + h) + 4

f(x+h) = -3(x^3 + 3hx^2 + 3h^2x + h^2) + 9(x + h) + 4

f(x+h) = -3x^3 - 9hx^2 - 9h^2x - 9h^2 + 9x + 9h + 4

The above is the simplest form of f(x + h)

Use that form to simplify the numerator:

f(x+h) - f(x) = -3x^2 - 9hx^2 - 9h^2x - 9h^2 + 9x + 9h + 4 + 3x^3 - 9x - 4

f(x+h) - f(x) = -9hx^2 - 9h^2x - 9h^2 + 9h

Remove a common factor, h:

f(x+h) - f(x) = h(-9x^2 - 9hx - 9h + 9)

Substitute the simplified numerator into the limit:

f'(x) = lim_(hto0)(h(-9x^2 - 9hx - 9h + 9))/h

h/h becomes 1:

f'(x) = lim_(hto0)-9x^2 - 9hx - 9h + 9

Let h to 0

f'(x) = -9x^2 + 9