How do you find f'(x) using the limit definition given f(x)=3x^(−2)f(x)=3x2?

2 Answers
Jul 8, 2016

= - 6/x^3=6x3

Explanation:

by definition

f'(x) =lim_{h to 0} (f(x+h) - f(x))/(h)

=lim_{h to 0} (1/h) (3/(x+h)^2 - 3/x^2)

=lim_{h to 0} (1/h)* (3x^2 - 3(x+h)^2)/((x+h)^2x^2)

=lim_{h to 0} (1/h) * (3x^2 - 3(x^2+2xh+h^2))/((x+h)^2x^2)

=lim_{h to 0} (1/h)* ( - 6xh-3h^2)/((x+h)^2x^2)

=lim_{h to 0}( - 6x-3h)/((x+h)^2x^2)

=lim_{h to 0}( - 6x)/((x+h)^2x^2) + mathcal(O)(h)

=-( 6x)/((x+0)^2x^2)

=-( 6x)/x^4

= - 6/x^3

Jul 8, 2016

I found f'(x)=-6/x^3

Explanation:

Using the limit definition we get:
f'(x)=lim_(h->0)(f(x+h)-f(x))/h
where h is a small increment.
In our case we have (using the fact that x^-2=1/x^2):
f'(x)=lim_(h->0)(3/(x+h)^2-3/(x^2))/h=
=lim_(h->0)1/h((3x^2-3(x+h)^2)/((x+h)^2x^2))=
=lim_(h->0)1/h((cancel(3x^2)cancel(-3x^2)-6xh-3h^2)/((x+h)^2x^2))=
=lim_(h->0)1/cancel(h)(cancel(h)(-6x-3h)/((x+h)^2x^2))=
as h->0 we get:
=lim_(h->0)((-6xcancel(-3h)^0)/((x+cancel(h)^0)^2x^2))=(-6x)/x^4=-6/x^3