How do you find f'(x) using the limit definition given f(x)=4+x-2x^2f(x)=4+x2x2?

1 Answer
Jul 22, 2016

f'(x)=1-4x.

Explanation:

Let us remember the defn. of f'(x)=lim_(trarrx)[(f(t)-f(x))/(t-x)]

Now, f(x)=4+x-2x^2rArr f(t)=4+t-2t^2

rArr f(t)-f(x)=4+t-2t^2-4-x+2x^2

=t-x-2(t^2-x^2)=(t-x)-2(t-x)(t+x)

=(t-x){(1-2(t+x)}

rArr[(f(t)-f(x))/(t-x)]={(1-2(t+x)}, if, t!=x.

We know that as trarrx, t!=x. Therefore,

f'(x)=lim_(trarrx)[(f(t)-f(x))/(t-x)]

=lim_(trarrx){(1-2(t+x)}=1-2(x+x)=1-4x.