How do you find f'(x) using the limit definition given f (x) = sqrt(1+3x)f(x)=1+3x?

1 Answer
Jul 4, 2016

= 3 / (2sqrt(1+3x )=321+3x

Explanation:

f (x) = sqrt(1+3x)f(x)=1+3x

by definition f'(x) = lim_{h to 0} (f(x+h) - f(x))/h

= lim_[h to 0] 1/h (sqrt(1+3(x+h)) - sqrt(1+3x))

multiply by conjugate
= lim_[h to 0] 1/h (sqrt(1+3(x+h)) - sqrt(1+3x)) times (sqrt(1+3(x+h)) + sqrt(1+3x))/(sqrt(1+3(x+h)) + sqrt(1+3x))

= lim_[h to 0] 1/h (1+3(x+h) - (1+3x)) / (sqrt(1+3(x+h)) + sqrt(1+3x))

= lim_[h to 0] 1/h (3h) / (sqrt(1+3(x+h)) + sqrt(1+3x))

= lim_[h to 0] (3) / (sqrt(1+3(x+h)) + sqrt(1+3x))

= (3) / (sqrt(1+3(x)) + sqrt(1+3x))

= 3 / (2sqrt(1+3x )