How do you find f'(x) using the limit definition given f(x) =sqrt (x+1)f(x)=x+1?

1 Answer
Jul 4, 2016

= 1/(2 sqrt (x+1) )=12x+1

Explanation:

f(x) =sqrt (x+1)f(x)=x+1

f'(x) = lim_{h to 0} 1/h ( sqrt (x+ h+1) - sqrt (x+1))

use the conjugate

= lim_{h to 0} 1/h ( sqrt (x+ h+1) - sqrt (x+1)) *( sqrt (x+ h+1) + sqrt (x+1))/( sqrt (x+ h+1) + sqrt (x+1))

= lim_{h to 0} 1/h ( (x+ h+1) - (x+1)) /( sqrt (x+ h+1) + sqrt (x+1))

= lim_{h to 0} 1/h ( h) /( sqrt (x+ h+1) + sqrt (x+1))

= lim_{h to 0} 1/( sqrt (x+ h+1) + sqrt (x+1))

= 1/( sqrt (x+1) + sqrt (x+1))

= 1/(2 sqrt (x+1) )