How do you find f'(x) using the limit definition given sqrt(2x-1)?

1 Answer
Jul 14, 2016

f'(x) = lim_{h to 0} (f(x+h) - f(x))/(h)

=lim_{h to 0} (sqrt(2(x+h)-1) - sqrt(2x-1))/(h)

next, we times by the conjugate

=lim_{h to 0} (sqrt(2(x+h)-1) - sqrt(2x-1))/(h) * (sqrt(2(x+h)-1) + sqrt(2x-1))/(sqrt(2(x+h)-1) + sqrt(2x-1))

= lim_{h to 0} (1/h) (2(x+h)-1 - (2x-1))/(sqrt(2(x+h)-1) + sqrt(2x-1))

= lim_{h to 0} (1/h) (2h)/(sqrt(2(x+h)-1) + sqrt(2x-1))

= lim_{h to 0} (2)/(sqrt(2(x+h)-1) + sqrt(2x-1))

= (2)/(sqrt(2x-1) + sqrt(2x-1))

= (2)/(2(sqrt(2x-1) )

= 1/(sqrt(2x-1)