f'(x) = lim_{h to 0} (f(x+h) - f(x))/(h)
=lim_{h to 0} (sqrt(2(x+h)-1) - sqrt(2x-1))/(h)
next, we times by the conjugate
=lim_{h to 0} (sqrt(2(x+h)-1) - sqrt(2x-1))/(h) * (sqrt(2(x+h)-1) + sqrt(2x-1))/(sqrt(2(x+h)-1) + sqrt(2x-1))
= lim_{h to 0} (1/h) (2(x+h)-1 - (2x-1))/(sqrt(2(x+h)-1) + sqrt(2x-1))
= lim_{h to 0} (1/h) (2h)/(sqrt(2(x+h)-1) + sqrt(2x-1))
= lim_{h to 0} (2)/(sqrt(2(x+h)-1) + sqrt(2x-1))
= (2)/(sqrt(2x-1) + sqrt(2x-1))
= (2)/(2(sqrt(2x-1) )
= 1/(sqrt(2x-1)