How do you find [fog](x) and [gof](x) given f(x)=1+x and g(x)=x^2+5x+6?

1 Answer
Feb 13, 2017

[fog ] (x)=x^2+5x+7
[ gof ] (x) =x^2+7x+12

Explanation:

This is a composition of functions

f(x)=1+x

g(x)=x^2+5x+6=(x+2)(x+3)

[ fog ] (x)=f(g(x))=f(x^2+5x+6)

=1+x^2+5x+6=x^2+5x+7

[ gof ] (x)=g(f(x))=g(1+x)=(x+2+1)(x+3+1)

=(x+3)(x+4)

=x^2+7x+12

[ fog ] (x) != [ gof ] (x)