How do you find (g o f)(x) when f(x)=2x and g(x)=x^3+x^2+1?

1 Answer
Apr 16, 2018

color(blue)(8x^3+4x^2+1)

Explanation:

(g @ f)(x)=g(f(x))

To find the result we substitute x=f(x) in g(x):

g(x)=x^3+x^2+1

g(f(x))=(f(x))^3+(f(x))^2+1=(2x)^3+(2x)^2+1

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =8x^3+4x^2+1