How do you find int (11-2x)/(x^2 + x - 2) dx112xx2+x2dx using partial fractions?

2 Answers
Oct 22, 2016

int((11-2x)dx)/((x-1)(x+2))=3ln(x-1)-5ln(x+2)+C(112x)dx(x1)(x+2)=3ln(x1)5ln(x+2)+C

Explanation:

First factorise the denominator
x^2+x-2=(x-1)(x+2)x2+x2=(x1)(x+2)

Then we look for the partial fraction

(11-2x)/((x-1)(x+2))=A/(x-1)+B/(x+2)112x(x1)(x+2)=Ax1+Bx+2

=(A(x+2) +B(x-1))/((x-1)(x+2))=A(x+2)+B(x1)(x1)(x+2)

So 11-2x=A(x+2) +B(x-1)112x=A(x+2)+B(x1)

If x=1x=1 => 11-2=3A+0112=3A+0
so A=9/3=3A=93=3

If x=-2x=2 => 11+4=0-3B11+4=03B
so B=15/-3=-5B=153=5

(11-2x)/((x-1)(x+2))=3/(x-1)-5/(x+2)112x(x1)(x+2)=3x15x+2

Then we can integrate

int((11-2x)dx)/((x-1)(x+2))=int(3dx)/(x-1)-int(5dx)/(x+2)(112x)dx(x1)(x+2)=3dxx15dxx+2

=3ln(x-1)-5ln(x+2)+C=3ln(x1)5ln(x+2)+C

See the answer:
enter image source here