How do you find x+1x3+x22xdx using partial fractions?

1 Answer
Mar 13, 2018

The answer is =12ln(|x|)16ln(|x+2|)+23ln(|x1|)+C

Explanation:

Perform the decomposition into partial fractions

x+1x3+x22x=x+1x(x2+x2)

=x+1x(x+2)(x1)

=Ax+Bx+2+Cx1

=A(x+2)(x1)+B(x)(x1)+C(x)(x+2)x(x+2)(x1)

The denominators are the same, compare the numerators

x+1=A(x+2)(x1)+B(x)(x1)+C(x)(x+2)

Let x=0, , 1=2A, , A=12

Let x=2, , 1=6B, , B=16

Let x=1, , 2=3C, , C=23

Therefore,

x+1x3+x22x=12x+16x+2+23x1

(x+1)dxx3+x22x=12dxx+16dxx+2+23dxx1

=12ln(|x|)16ln(|x+2|)+23ln(|x1|)+C