How do you find x2+2x(x2+1)2dx using partial fractions?

1 Answer
Feb 2, 2017

2x1(x2+1)2dx=12(tan1x)+x2x2+1+c

Explanation:

Partial fractions of x2+2x(x2+1)2, will be of type

x2+2x(x2+1)2=Ax+Bx2+1+Cx+D(x2+1)2

= (Ax+B)(x2+1)+Cx+D(x2+1)2

= Ax3+Bx2+Ax+B+Cx+D(x2+1)2

= Ax3+Bx2+(A+C)x+(B+D)(x2+1)2

Comparing the terms, we get A=0, B=1, A+C=2 and B+D=0

i.e. A=0, B=1, C=2 and D=1

Hence, x2+2x(x2+1)2=1x2+1+2x1(x2+1)2 and

x2+2x(x2+1)2dx=1x2+1dx+2x1(x2+1)2dx

Now 1x2+1dx=tan1x is a well known integral and for the other one

We can break 2x1(x2+1)2dx=2x(x2+1)2dx1(x2+1)2dx

For first term, let us assume u=x2+1, then du=2xdx= 2x(x2+1)2dx=duu2=1u=1x2+1

and for second term let us assume x=tanv then

1(x2+1)2dx=sec2vsec4vdv=cos2vdv

= 12(1+cos2v)dv=v2+14sin2v

= tan1x2+12sinvcosv

= tan1x2+12xx2+1×1x2+1

= tan1x2+12xx2+1

Hence, 2x1(x2+1)2dx

= 1x2+1+tan1x2+12xx2+1+c

= 12(tan1x)+x2x2+1+c