How do you find \log _ { 2} [ 32( x ^ { 2} - 4) ]log2[32(x24)]?

1 Answer
Dec 13, 2016

For problems like these, we expand the logarithms using the sum and difference rules and evaluate if possible.

=log_2(32) + log_2(x^2 - 4)=log2(32)+log2(x24)

= log32/log2 + log_2(x + 2)(x - 2)=log32log2+log2(x+2)(x2)

= (log2^5)/log2 + log_2(x + 2) + log_2(x - 2)=log25log2+log2(x+2)+log2(x2)

= (5log2)/log2 + log_2 (x + 2) + log_2 (x - 2)=5log2log2+log2(x+2)+log2(x2)

=5 + log_2 (x +2) + log_2 (x- 2)=5+log2(x+2)+log2(x2)

Hopefully this helps!