How do you find sin 2x, given tan x = -2 and cos x > 0?

1 Answer
Nov 30, 2015

Find sin 2x, knowing tan x = -2, and cos x > 0

Ans: sin 2x = 4/5sin2x=45

Explanation:

3 Trig identities to be used:
1 + tan^2 x = 1/cos^2 x1+tan2x=1cos2x(1)
sin^2 x + cos ^2 x = 1sin2x+cos2x=1 (2)
sin 2x = 2sin x.cos xsin2x=2sinx.cosx (3)
Given tan x = -2. First find cos x and sin x
(1) --> 1 + 4 = 1/(cos^2 x)1+4=1cos2x --> cos^2 x = 1/5cos2x=15 --> cos x = +- 1/sqrt5cosx=±15.
Since cos x > 0, then cos x = 1/sqrt5.cosx=15.
(2) --> sin^2 x = 1 - cos^2 x = 1 - 1/5 = 4/5sin2x=1cos2x=115=45 --> sin x = +- 2/sqrt5.sinx=±25.
Since cos x > 0 then sin x = 2/sqrt5sinx=25.
(3) --> sin 2x = 2sin x.cos x = 2(1/sqrt5)(2/sqrt5) = 4/5sin2x=2sinx.cosx=2(15)(25)=45