If we are given coordinates of the form (x,y), where x and y are negative then we are in the III quadrant.
Since (-4,-4) are the sides of a right triangle, then the length of the terminal side ( the hypotenuse ) is given by Pythagoras' theorem:
Let the terminal side be bbr
r^2=(-4)^2+(-4)^2
=>r=sqrt((-4)^2+(-4)^2)=4sqrt(2)
So for the right triangle bb(ABC), we have:
c=4sqrt(2)
a=-4
b=-4
sin(theta)="opposite"/"hypotenuse"=a/c=-4/(4sqrt(2))=color(blue)(-sqrt(2)/2)
cos(theta)="adjacent"/"hypotenuse"=b/c=-4/(4sqrt(2))=color(blue)(-sqrt(2)/2)
tan(theta)="opposite"/"adjacent"=a/b=(-4)/-4=color(blue)(1)
Since:
color(red)bb(csc(theta)=1/sin(theta))
color(red)bb(sec(theta)=1/cos(theta))
color(red)bb(cot(theta)=1/tan(theta))
We have:
csc(theta)=1/(-sqrt(2)/2)=color(blue)(-sqrt(2))
sec(theta)=1/(-sqrt(2)/2)=color(blue)(-sqrt(2))
cot(theta)=1/1=color(blue)(1)