How do you find sin, cos, tan, sec, csc, and cot given (-4,-4)?

1 Answer
Mar 2, 2018

See below.

Explanation:

enter image source here

If we are given coordinates of the form (x,y), where x and y are negative then we are in the III quadrant.

Since (-4,-4) are the sides of a right triangle, then the length of the terminal side ( the hypotenuse ) is given by Pythagoras' theorem:

Let the terminal side be bbr

r^2=(-4)^2+(-4)^2

=>r=sqrt((-4)^2+(-4)^2)=4sqrt(2)

So for the right triangle bb(ABC), we have:

c=4sqrt(2)

a=-4

b=-4

sin(theta)="opposite"/"hypotenuse"=a/c=-4/(4sqrt(2))=color(blue)(-sqrt(2)/2)

cos(theta)="adjacent"/"hypotenuse"=b/c=-4/(4sqrt(2))=color(blue)(-sqrt(2)/2)

tan(theta)="opposite"/"adjacent"=a/b=(-4)/-4=color(blue)(1)

Since:

color(red)bb(csc(theta)=1/sin(theta))

color(red)bb(sec(theta)=1/cos(theta))

color(red)bb(cot(theta)=1/tan(theta))

We have:

csc(theta)=1/(-sqrt(2)/2)=color(blue)(-sqrt(2))

sec(theta)=1/(-sqrt(2)/2)=color(blue)(-sqrt(2))

cot(theta)=1/1=color(blue)(1)