How do you find tan (x+y) if tan x=5/4 and sec y=2? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Ratnaker Mehta Jul 13, 2016 tan(x+y)=(5+4sqrt3)/(4-5sqrt3), or,=(5-4sqrt3)/(4+5sqrt3) Explanation: Given that secy=2, we use the Identity : sec^2y=1+tan^2y to get, tany=+-sqrt(sec^2y-1) = +-sqrt(4-1)=+-sqrt3. Now, tan(x+y)=(tanx+tany)/(1-tanx*tany)=(5/4+-sqrt3)/(1-5/4*(+-sqrt3)) =(5+-4sqrt3)/(4-(+-5sqrt3) Thus, tan(x+y)=(5+4sqrt3)/(4-5sqrt3), or,=(5-4sqrt3)/(4+5sqrt3) Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 3160 views around the world You can reuse this answer Creative Commons License