How do you find tan (x+y) if tan x=5/4 and sec y=2?

1 Answer
Jul 13, 2016

tan(x+y)=(5+4sqrt3)/(4-5sqrt3), or,=(5-4sqrt3)/(4+5sqrt3)

Explanation:

Given that secy=2, we use the Identity : sec^2y=1+tan^2y to get, tany=+-sqrt(sec^2y-1) = +-sqrt(4-1)=+-sqrt3.

Now, tan(x+y)=(tanx+tany)/(1-tanx*tany)=(5/4+-sqrt3)/(1-5/4*(+-sqrt3))

=(5+-4sqrt3)/(4-(+-5sqrt3)

Thus, tan(x+y)=(5+4sqrt3)/(4-5sqrt3), or,=(5-4sqrt3)/(4+5sqrt3)