How do you find tan2A, given sin A = 3/5 and A is in QII?

1 Answer
Dec 2, 2015

Find tan 2A, given sin A = 3/5 and A in Quadrant II.

Ans: - 24/7

Explanation:

Use the trig identity: tan 2A = (2tan A)/(1 - tan^2 A) (1).
First, find tan A = sin A/(cos A).
sin A = 3/5 --> sin^2 A = 9/25 --> cos^2 A = 1 - 9/25 = 15/25 -
--> cos A = +- 4/5.
Because A is in Quadrant II, its cos is negative. cos A = - 4/5
tan A = sin A/(cos A) = (3/5)(-5/4) = -3/4
Replace value of tan A = -3/4 into identity (1) -->
tan 2A = (-3/2)/(1 - 9/16) = (-3/2)(16/7) = -24/7
Check by calculator.
cos A = -4/5 = -0.8 --> A = 143.13 --> 2A = 286.26.-->
-> tan 2A = -3.43
-24/7 = -3. 43. OK