How do you find the antiderivative of int x^3/(4+x^2) dx?

1 Answer
Dec 2, 2016

I=intx^3/(4+x^2)dx

Let u=4+x^2, implying that du=2xdx. Also note that x^2=u-4. Rearranging the integral:

I=1/2int(x^2(2xdx))/(4+x^2)=1/2int(u-4)/udu=1/2int(1-4/u)du

Splitting up the integral:

I=1/2intdu-2int1/udu=1/2u-2lnabsu=1/2(4+x^2)-2lnabs(4+x^2)+C

Letting the constant from 1/2(4+x^2) absorb into C:

I=1/2x^2-2ln(x^2+4)+C