How do you find the arc length of y=ln(cos(x))y=ln(cos(x)) on the interval [pi/6,pi/4][π6,π4]?
1 Answer
You can find the Arc Length of a function by first finding its derivative and plugging into the known formula:
L = int_a^bsqrt(1 + (dy/dx)^2)dxL=∫ba√1+(dydx)2dx
Process:
With our function of
dy/dx = -sinx/cosxdydx=−sinxcosx ,
which is equal to:
-tanx−tanx .
Plugging into our Arc Length formula, we have:
L = int_a^b sqrt(1 + (-tanx)^2)dxL=∫ba√1+(−tanx)2dx .
If we square the
L = int_a^b sqrt(1 + tan^2(x))dxL=∫ba√1+tan2(x)dx
Since
L = int_a^b sqrt(sec^2(x))dxL=∫ba√sec2(x)dx , which simplifies toL = int_a^b secx dxL=∫basecxdx
Now we must remember that
ln(secx + tanx)ln(secx+tanx) frompi/6π6 topi/4π4 , giving us:
L = ln(2/sqrt2 + 1) - ln(2/sqrt3 + 1/sqrt3)L=ln(2√2+1)−ln(2√3+1√3)
L = ln(sqrt2 + 1) - ln(sqrt3)L=ln(√2+1)−ln(√3)
If you remember that
L = ln((sqrt2 + 1)/sqrt3)L=ln(√2+1√3)
We can evaluate this for a decimal answer:
L ~~ 0.332067...