How do you find the length of the curve y=e^xy=ex between 0<=x<=10x1 ?

1 Answer
Oct 10, 2014

L=int_0^1sqrt{1+({dy}/{dx})^2} dxL=101+(dydx)2dx

=int_0^1sqrt{1+e^{2x}}dx=101+e2xdx

by the substitution u=sqrt{1+e^{2x}}u=1+e2x.

Rightarrow {du}/{dx}=e^{2x}/sqrt{1+e^{2x}}={u^2-1}/u Rightarrow dx={u}/{u^2-1}dududx=e2x1+e2x=u21udx=uu21du

As xx goes from 00 to 11, uu goes from sqrt{2}2 to sqrt{1+e^2}1+e2

=int_{sqrt{2}}^{sqrt{1+e^2}}u^2/{u^2-1} du=1+e22u2u21du

by partial fraction decomposition,

=int_{sqrt{2}}^{sqrt{1+e^2}}[1+1/2(1/{u-1}-1/{u+1})] du=1+e22[1+12(1u11u+1)]du

=[u+1/2(ln|u-1|-ln|u+1|)]_{sqrt{2}}^{sqrt{1+e^2}}=[u+12(ln|u1|ln|u+1|)]1+e22

=[u+1/2ln|{u-1}/{u+1}|]_{sqrt{2}}^{sqrt{1+e^2}}=[u+12lnu1u+1]1+e22

=sqrt{1+e^2}+1/2 ln({sqrt{1+e^2}-1}/{sqrt{1+e^2}-1})-sqrt{2}-1/2ln({sqrt{2}-1}/{sqrt{2}+1})=1+e2+12ln(1+e211+e21)212ln(212+1)

I hope that this was helpful.