How do you find the area inner loop of r=4-6sintheta?

1 Answer
Aug 24, 2017

13pi-26sin^-1(2/3)-12sqrt5

Explanation:

First we have to find the values of theta that constitute one loop. A loop will begin and end at the pole (origin), when r=0.

4-6sintheta=0

sintheta=2/3

Then

theta=sin^-1(2/3)

This is the angle in Quadrant "I". The corresponding angle in Quadrant "II" where sintheta=2//3 is given by pi-sin^-1(2//3).

So, we want the area from alpha=sin^-1(2//3) to beta=pi-sin^-1(2//3).

The area of a polar curve r from theta_1 to theta_2 is given by 1/2int_(theta_1)^(theta_2)r^2d theta. The area of the curve is then:

A=1/2int_alpha^beta(4-6sintheta)^2d theta

Also note that (4-6sintheta)^2=(2(2-3sintheta))^2=4(2-3sintheta)^2.

=2int_alpha^beta(2-3sintheta)^2d theta

=2int_alpha^beta(4-12sintheta+9sin^2theta)d theta

Use the simplification sin^2theta=1/2(1-cos2theta).

=2int_alpha^beta(4-12sintheta+9/2-9/2cos2theta)d theta

=int_alpha^beta(13-24sintheta-9cos2theta)d theta

Integrate term-by-term. Depending on how comfortable you are with integration, you may want to use the substitution u=2theta for the last term.

=[13theta+24costheta-9/2sin2theta]_alpha^beta

Using sin2theta=2sinthetacostheta:

=[13theta+24costheta-9sinthetacostheta]_alpha^beta

Recall that sinalpha=sinbeta=2//3. Thus, cosalpha=sqrt(1-sin^2alpha)=sqrt5//3. However, since beta is in Quadrant "II", cosbeta=-sqrt5//3.

=13beta+24cosbeta-9sinbetacosbeta-13alpha-24cosalpha+9sinalphacosalpha

=13(beta-alpha)+24(-sqrt5/3)-9(2/3)(-sqrt5/3)-24(5/sqrt3)+9(2/3)(sqrt5/3)

=13(pi-sin^-1(2/3)-sin^-1(2/3))-16sqrt5+4sqrt5

=13pi-26sin^-1(2/3)-12sqrt5