How do you find the area inner loop of r=4-6sintheta?
1 Answer
Explanation:
First we have to find the values of
4-6sintheta=0
sintheta=2/3
Then
theta=sin^-1(2/3)
This is the angle in Quadrant
So, we want the area from
The area of a polar curve
A=1/2int_alpha^beta(4-6sintheta)^2d theta
Also note that
=2int_alpha^beta(2-3sintheta)^2d theta
=2int_alpha^beta(4-12sintheta+9sin^2theta)d theta
Use the simplification
=2int_alpha^beta(4-12sintheta+9/2-9/2cos2theta)d theta
=int_alpha^beta(13-24sintheta-9cos2theta)d theta
Integrate term-by-term. Depending on how comfortable you are with integration, you may want to use the substitution
=[13theta+24costheta-9/2sin2theta]_alpha^beta
Using
=[13theta+24costheta-9sinthetacostheta]_alpha^beta
Recall that
=13beta+24cosbeta-9sinbetacosbeta-13alpha-24cosalpha+9sinalphacosalpha
=13(beta-alpha)+24(-sqrt5/3)-9(2/3)(-sqrt5/3)-24(5/sqrt3)+9(2/3)(sqrt5/3)
=13(pi-sin^-1(2/3)-sin^-1(2/3))-16sqrt5+4sqrt5
=13pi-26sin^-1(2/3)-12sqrt5