How do you find the binomial expansion for (2x+3)^3(2x+3)3?

2 Answers
Jul 10, 2015

(2x+3)^3 = 8x^3 + 36x^2 + 54x + 27(2x+3)3=8x3+36x2+54x+27

Explanation:

With the Pascal's triangle, it's easy to find every binomial expansion :

Each term, of this triangle, is the result of the sum of two terms on the top-line. (example in red)

11
1. 11.1
color(blue)(1. 2. 1)1.2.1
1. color(red)3 . color(red)3. 11.3.3.1
1. 4. color(red)6. 4. 11.4.6.4.1
...

More, each line has the information of one binomial expansion :

The 1st line, for the power 00
The 2nd, for the power 11
The 3rd, for the power 22...

For example : (a+b)^2(a+b)2 we will use the 3rd line in blue following this expansion :

(a+b)^2 = color(blue)1*a^2*b^0 + color(blue)2*a^1*b^1 + color(blue)1*a^0*b^2(a+b)2=1a2b0+2a1b1+1a0b2

Then : (a+b)^2 = a^2 + 2ab + b^2(a+b)2=a2+2ab+b2

To the power 33 :

(a+b)^3 = color(green)1*a^3*b^0 + color(green)3*a^2*b^1 + color(green)3*a^1*b^2 + color(green)1*a^0*b^3(a+b)3=1a3b0+3a2b1+3a1b2+1a0b3

Then (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3(a+b)3=a3+3a2b+3ab2+b3

So here we have color(red)(a=2x)a=2x and color(blue)(b=3)b=3 :

And (2x+3)^3 = color(red)((2x))^3 + 3*color(red)((2x))^2*color(blue)3 + 3*color(red)((2x))*color(blue)3^2 + color(blue)3^3(2x+3)3=(2x)3+3(2x)23+3(2x)32+33

Therefore : (2x+3)^3 = 8x^3 + 36x^2 + 54x + 27(2x+3)3=8x3+36x2+54x+27

Jul 10, 2015

(2x+3)^3=8x^3+36x^2+54x+27(2x+3)3=8x3+36x2+54x+27

Explanation:

(2x+3)^3(2x+3)3

Use the cube of a sum method, in which (a+b)^3=a^3+3a^2b+3ab^2+b^3(a+b)3=a3+3a2b+3ab2+b3.

a=2x;a=2x; b=3b=3

(2x+3)^3=(2x)^3+(3*2x^2*3)+(3*2x*3^2)+3^3(2x+3)3=(2x)3+(32x23)+(32x32)+33 =

8x^3+(3*4x^2*3)+(3*2x*9)+278x3+(34x23)+(32x9)+27 =

8x^3+(9*4x^2)+(27*2x)+278x3+(94x2)+(272x)+27 =

8x^3+36x^2+54x+278x3+36x2+54x+27