How do you find the binomial expansion of the expression (d5)6?

1 Answer
Aug 6, 2015

d6+6d5(5)+15d4(5)2+20d3(5)3+15d2(5)4+6d(5)5+(5)6

Explanation:

The binomial expansion can be written, symmetrical form
as follows( Think of the Pascal Triangle):

d6+6C1d5(5)1+6C2d4(5)2+6C3d3(5)3+6C4d2(5)4+6C5d(5)5+6C6(5)6

Here 6C1=6;6C2=6512=15;6C3=654123=20;6C4=6C2=15;6C5=6C1=6,6C6=1

d6+6d5(5)+15d4(5)2+20d3(5)3+15d2(5)4+6d(5)5+(5)6