How do you find the binomial expansion of the expression (d-5)^6(d5)6?

1 Answer
Aug 6, 2015

d^6 +6d^5(-5)+ 15d^4 (-5)^2 +20 d^3 (-5)^3 + 15d^2 (-5)^4 +6d (-5)^5 + (-5)^6d6+6d5(5)+15d4(5)2+20d3(5)3+15d2(5)4+6d(5)5+(5)6

Explanation:

The binomial expansion can be written, symmetrical form
as follows( Think of the Pascal Triangle):

d^6 + 6C_1 d^5 (-5)^1 + 6C_2 d^4 (-5)^2 + 6C_3 d^3 (-5)^3+ 6C_4 d^2 (-5)^4 + 6C_5 d (-5)^5 + 6C_6 (-5)^6d6+6C1d5(5)1+6C2d4(5)2+6C3d3(5)3+6C4d2(5)4+6C5d(5)5+6C6(5)6

Here 6C_1 =6; 6C_2 = (6*5)/(1*2)= 15; 6C_3 = (6*5*4)/ (1*2*3)=20; 6C_4 = 6C_2 = 15; 6C_5= 6C_1 =6, 6C_6 = 16C1=6;6C2=6512=15;6C3=654123=20;6C4=6C2=15;6C5=6C1=6,6C6=1

d^6 +6d^5(-5)+ 15d^4 (-5)^2 +20 d^3 (-5)^3 + 15d^2 (-5)^4 +6d (-5)^5 + (-5)^6d6+6d5(5)+15d4(5)2+20d3(5)3+15d2(5)4+6d(5)5+(5)6