How do you find the coordinates of the other endpoint of a segment with the given endpoint T(-3.5,-6) and the midpoint M(1.5,4.5)?

1 Answer
May 20, 2017

See a solution process below:

Explanation:

The formula to find the mid-point of a line segment give the two end points is:

M = ((color(red)(x_1) + color(blue)(x_2))/2 , (color(red)(y_1) + color(blue)(y_2))/2)M=(x1+x22,y1+y22)

Where MM is the midpoint and the given points are:

(color(red)((x_1, y_1))) and (color(blue)((x_2, y_2)))

Substituting the information we have gives:

(1.5, 4.5) = ((color(red)(-3.5) + color(blue)(x_2))/2 , (color(red)(-6) + color(blue)(y_2))/2)

To find color(blue)(x_2) we need to solve this equation:

1.5 = (color(red)(-3.5) + color(blue)(x_2))/2

color(green)(2) xx 1.5 = color(green)(2) xx (color(red)(-3.5) + color(blue)(x_2))/2

3 = cancel(color(green)(2)) xx (color(red)(-3.5) + color(blue)(x_2))/color(green)(cancel(color(black)(2)))

3 = color(red)(-3.5) + color(blue)(x_2)

3.5 + 3 = 3.5 color(red)(- 3.5) + color(blue)(x_2)

6.5 = 0 + color(blue)(x_2)

6.5 = color(blue)(x_2)

color(blue)(x_2) = 6.5

To find color(blue)(y_2) we need to solve this equation:

4.5 = (color(red)(-6) + color(blue)(y_2))/2

color(green)(2) xx 4.5 = color(green)(2) xx (color(red)(-6) + color(blue)(y_2))/2

9 = cancel(color(green)(2)) xx (color(red)(-6) + color(blue)(y_2))/color(green)(cancel(color(black)(2)))

9 = color(red)(-6) + color(blue)(y_2)

9 + 6 = 6 color(red)(- 6) + color(blue)(y_2)

15 = 0 + color(blue)(y_2)

15 = color(blue)(y_2)

color(blue)(y_2) = 15

The other end point of the segment is: (color(blue)(6.5), color(blue)(15))