The formula to find the mid-point of a line segment give the two end points is:
M = ((color(red)(x_1) + color(blue)(x_2))/2 , (color(red)(y_1) + color(blue)(y_2))/2)M=(x1+x22,y1+y22)
Where MM is the midpoint and the given points are:
(color(red)((x_1, y_1))) and (color(blue)((x_2, y_2)))
Substituting the information we have gives:
(1.5, 4.5) = ((color(red)(-3.5) + color(blue)(x_2))/2 , (color(red)(-6) + color(blue)(y_2))/2)
To find color(blue)(x_2) we need to solve this equation:
1.5 = (color(red)(-3.5) + color(blue)(x_2))/2
color(green)(2) xx 1.5 = color(green)(2) xx (color(red)(-3.5) + color(blue)(x_2))/2
3 = cancel(color(green)(2)) xx (color(red)(-3.5) + color(blue)(x_2))/color(green)(cancel(color(black)(2)))
3 = color(red)(-3.5) + color(blue)(x_2)
3.5 + 3 = 3.5 color(red)(- 3.5) + color(blue)(x_2)
6.5 = 0 + color(blue)(x_2)
6.5 = color(blue)(x_2)
color(blue)(x_2) = 6.5
To find color(blue)(y_2) we need to solve this equation:
4.5 = (color(red)(-6) + color(blue)(y_2))/2
color(green)(2) xx 4.5 = color(green)(2) xx (color(red)(-6) + color(blue)(y_2))/2
9 = cancel(color(green)(2)) xx (color(red)(-6) + color(blue)(y_2))/color(green)(cancel(color(black)(2)))
9 = color(red)(-6) + color(blue)(y_2)
9 + 6 = 6 color(red)(- 6) + color(blue)(y_2)
15 = 0 + color(blue)(y_2)
15 = color(blue)(y_2)
color(blue)(y_2) = 15
The other end point of the segment is: (color(blue)(6.5), color(blue)(15))