How do you find the coordinates of the other endpoint of a segment with the given endpoint is K(5,1) and the midpoint is M(1,4)?

1 Answer
May 23, 2018

See a solution process below:

Explanation:

The formula to find the mid-point of a line segment give the two end points is:

M = ((color(red)(x_1) + color(blue)(x_2))/2 , (color(red)(y_1) + color(blue)(y_2))/2)M=(x1+x22,y1+y22)

Where MM is the midpoint and the given points are:

(color(red)(x_1), color(red)(y_1))(x1,y1) and (color(blue)(x_2), color(blue)(y_2))(x2,y2)

Substituting the values from the points in the problem gives:

(1, 4) = ((color(red)(5) + color(blue)(x_2))/2 , (color(red)(1) + color(blue)(y_2))/2)(1,4)=(5+x22,1+y22)

We can now solve for color(blue)(x_2)x2 and color(blue)(y_2)y2

  • color(blue)(x_2)x2:

(color(red)(5) + color(blue)(x_2))/2 = 15+x22=1

color(green)(2) xx (color(red)(5) + color(blue)(x_2))/2 = color(green)(2) xx 12×5+x22=2×1

cancel(color(green)(2)) xx (color(red)(5) + color(blue)(x_2))/color(green)(cancel(color(black)(2))) = 2

color(red)(5) + color(blue)(x_2) = 2

color(red)(5) - color(green)(5) + color(blue)(x_2) = 2 - color(green)(5)

0 + color(blue)(x_2) = -3

color(blue)(x_2) = -3

  • color(blue)(y_2)

(color(red)(1) + color(blue)(y_2))/2 = 4

color(green)(2) xx (color(red)(1) + color(blue)(y_2))/2 = color(green)(2) xx 4

cancel(color(green)(2)) xx (color(red)(1) + color(blue)(y_2))/color(green)(cancel(color(black)(2))) = 8

color(red)(1) + color(blue)(y_2) = 8

color(red)(1) - color(green)(1) + color(blue)(y_2) = 8 - color(green)(1)

0 + color(blue)(y_2) = 7

color(blue)(y_2) = 7

The Other End Point Is: (color(blue)(-3), color(blue)(7))