The formula to find the mid-point of a line segment give the two end points is:
M = ((color(red)(x_1) + color(blue)(x_2))/2 , (color(red)(y_1) + color(blue)(y_2))/2)M=(x1+x22,y1+y22)
Where MM is the midpoint and the given points are:
(color(red)(x_1), color(red)(y_1))(x1,y1) and (color(blue)(x_2), color(blue)(y_2))(x2,y2)
Substituting the values from the points in the problem gives:
(1, 4) = ((color(red)(5) + color(blue)(x_2))/2 , (color(red)(1) + color(blue)(y_2))/2)(1,4)=(5+x22,1+y22)
We can now solve for color(blue)(x_2)x2 and color(blue)(y_2)y2
(color(red)(5) + color(blue)(x_2))/2 = 15+x22=1
color(green)(2) xx (color(red)(5) + color(blue)(x_2))/2 = color(green)(2) xx 12×5+x22=2×1
cancel(color(green)(2)) xx (color(red)(5) + color(blue)(x_2))/color(green)(cancel(color(black)(2))) = 2
color(red)(5) + color(blue)(x_2) = 2
color(red)(5) - color(green)(5) + color(blue)(x_2) = 2 - color(green)(5)
0 + color(blue)(x_2) = -3
color(blue)(x_2) = -3
(color(red)(1) + color(blue)(y_2))/2 = 4
color(green)(2) xx (color(red)(1) + color(blue)(y_2))/2 = color(green)(2) xx 4
cancel(color(green)(2)) xx (color(red)(1) + color(blue)(y_2))/color(green)(cancel(color(black)(2))) = 8
color(red)(1) + color(blue)(y_2) = 8
color(red)(1) - color(green)(1) + color(blue)(y_2) = 8 - color(green)(1)
0 + color(blue)(y_2) = 7
color(blue)(y_2) = 7
The Other End Point Is: (color(blue)(-3), color(blue)(7))