How do you find the coordinates of the vertex y= 2x^2 + 7x - 21 ?

1 Answer
Apr 4, 2017

Vertex is (-7/4,-217/8) or (-1 3/4,-27 1/8)

Explanation:

To find the coordinates of vertex of y=2x^2+7x-21, one should convert this equation into vertex form i.e.

(y-k)=a(x-h)^2, where vertex is (h,k)

Now y=2x^2+7x-21

hArry=2(x^2+7/2x)-21

=2(x^2+2xx7/4xx x+(7/4)^2-(7/4)^2)-21

=2((x+7/4)^2-(7/4)^2)-21

=2(x+7/4)^2-2xx49/16-21

=2(x+7/4)^2-49/8-21

=2(x+7/4)^2-217/8

or (y+217/8)=2(x+7/4)^2

Hence, vertex is (-7/4,-217/8) or (-1 3/4,-27 1/8)

graph{2x^2+7x-21 [-6, 4, -28.56, -8.56]}