How do you find the cos of theta if abs(sintheta)=1?

1 Answer
May 25, 2016

cos theta = 0

Explanation:

No matter what the value of theta, the following holds:

cos^2 theta + sin^2 theta = 1

Considering sin theta as a Real valued function of Real numbers:

abs(sin theta) = 1 implies sin theta = +-1, which implies sin^2 theta = 1

So:

cos^2 theta = 1 - sin^2 theta = 1-1 = 0

So:

cos theta = 0

color(white)()
Complex footnote

The same does not hold if theta can take Complex values.

For any value of z we can define:

cos z = (e^(iz)+e^(-iz))/2

sin z = (e^(iz)-e^(-iz))/(2i)

For example:

If theta = ln(1+sqrt(2))i then:

sin(theta) = i, so abs(sin(i)) = 1

cos(theta) = sqrt(2)