How do you find the critical numbers of f(x)=sinxcosx?

1 Answer
Feb 1, 2017

Critical numbers of f(x) occur when

x \ \ = pi/4 + (npi)/2 \ \ \ \ n in ZZ
eg x = +-pi/4, +-3pi/4, +-5pi/4, ...

Explanation:

We have:

f(x) = sinx cos x

Differentiating wrt x using the product rule:

f'(x) = (sinx) (-sinx) + (cosx) (cosx)
" "= cos^2x -sin^2x
" "= cos(2x)

At a critical point f'(x)=0

:. cos (2x) = 0
:. 2x = pi/2 + npi
:. x \ \ = pi/4 + (npi)/2 \ \ \ \ n in ZZ

Hence critical numbers of f(x) occur when

x \ \ = pi/4 + (npi)/2 \ \ \ \ n in ZZ
eg x = +-pi/4, +-3pi/4, +-5pi/4, ...

We can see these values of x correspond to max/min of the graph y=sinx cos x :

enter image source here