How do you find the critical numbers of x^4-2x^3-3x^2-5?

1 Answer
Jun 4, 2018

Please see the explanation below

Explanation:

Let

f(x)=x^4-2x^3-3x^2-5

The first derivative is

f'(x)=4x^3-6x^2-6x

=2x(2x^2-3x-3)

The critical points are when f'(x)=0

2x(2x^2-3x-3)=0

=>, {(x=0),(2x^2-3x-3=0):}

=>, {(x=0),(x=(3+sqrt(33))/(4)=2.186),(x=(3-sqrt(33))/4=-0.686):}

The critical points are (0,-5) , (2.186, -17.393), and (-0.686,-5.545)

graph{x^4-2x^3-3x^2-5 [-24.14, 27.18, -19.11, 6.56]}