How do you find the critical numbers of y = cos x - sin x?

1 Answer
Jan 5, 2018

x = (n-1/(4))pi
n=0, +-1,+-2.."integer"

Explanation:

y = cosx - sinx

Take the derivative wrt x and set it to zero.

dy/dx = -(sinx + cosx) = 0

rArr sinx = - cosx
rArr sinx/cosx = - 1

rArr tan(x) = - 1
x = tan^(- 1)(-1) = npi - pi/4 =(n-1/(4))pi
x = (n-1/(4))pi
where n=0, +-1,+-2.."integer"

You can also inspect the plot of the function to verify the critical values. Click on maxima and minima of the graph to find their x values and compare to the solution.

y = cosx-sinx plot:
graph{(cosx- sinx) [-10, 10, -5, 5]}