How do you find the critical points for f(x,y)=xy(1-8x-7y)?

1 Answer
Jun 29, 2018

There is a saddle point at (0,0) and a local maximum at (1/24,1/21)

Explanation:

The function is

f(x,y)=xy(1-8x-7y)=xy-8x^2y-7xy^2

Caculate the partial derivatives

(delf)/(delx)=y-16xy-7y^2

(delf)/(dely)=x-8x^2-14xy

The critical points are

{(y-16xy-7y^2=0),(x-8x^2-14xy=0):}

<=>, {(y(1-16x-7y)=0),(x(1-8x-14y)=0):}

Therefore, (0,0) is a point

<=>, {((16x+7y)=1),((8x+14y)=1):}

<=>, {((16x+7y)=1),((16x+28y)=2):}

<=>, {(16x+7y=1),(y=1/21):}

<=>, {(x=1/24),(y=1/21):}

The other point is (1/24, 1/21)

Calculate the second derivatives

(del^2f)/(delx^2)=-16y

(del^2f)/(dely^2)=-14x

(del^2f)/(delxdely)=1-16x-14y

(del^2f)/(delydelx)=1-16x-14y

Calculate the Determinant D(x,y) of the hessian Matrix

((-16y,1-16x-14y ),(1-16x-14y,-14y))

D(x,y)=224y^2-(1-16x-14y)^2

Therefore,

D(0,0)=-1

As D(0,0)<0, this is a saddle point.

D(1/24,1/21)=0.51-0.11=0.4

D(1/24,1/21)>0, then (del^2f(1/24,1/21))/(delx^2)=-16/21

(del^2f(1/24,1/21))/(delx^2)<0

This is a local maximum at (1/24,1/21)