How do you find the definite integral of #int 5/(3x+1)# from [0,4]?

2 Answers
Aug 6, 2017

#5/3 ln 13#

Explanation:

To integrate this, one can use substitution method, letting 3x+1 =u. This gives 3dx= du, or dx = #1/3 du#

For x=0, u would be 1 and for x= 4, u would be 13. The given integral thus becomes

#int_(u=1)^13 5/3 1/u du#

= #5/3 [ln u]_1^13#

=#5/3 ln 13#

Aug 6, 2017

#5/3ln13#

Explanation:

#"using the standard integral"#

#•color(white)(x)int1/(ax+b)dx=1/aln|ax+b|+c#

#rArrint_0^4 5/(3x+1)dx#

#=[5 . 1/3ln(3x+1)]_0^4#

#=5/3ln13-cancel(5/3ln1)^0#

#=5/3ln13#