How do you find the derivative f(x)=arctansqrtx?

1 Answer
Dec 24, 2016

The answer is =1/(2(1+x)sqrtx)

Explanation:

We need

tan^2x+1=sec^2x

(tanx)'=sec^2x

Let y=arctan(sqrtx)

:.tan y=sqrtx

(tan y)'=(sqrtx)'

sec^2ydy/dx=1/(2sqrtx)

dy/dx=1/(sec^2y*2sqrtx)

sec^2y=1+tan^2y==1+x

So,

dy/dx=1/(2(1+x)sqrtx)