How do you find the derivative of 1/(x^2-1) using the limit definition?

1 Answer
Sep 19, 2016

(df)/(dx)=(-2x)/(x^2-1)^2

Explanation:

as f(x)=1/(x^2-1)

f(x+h)=1/((x+h)^2-1)

Hence, f(x+h)-f(x)=1/((x+h)^2-1)-1/(x^2-1)

= ((x^2-1)-((x+h)^2-1))/((x^2-1)((x+h)^2-1))

= ((x^2-1)-(x^2+2hx+h^2-1))/((x^2-1)((x+h)^2-1))

= ((x^2-1-x^2-2hx-h^2+1))/((x^2-1)((x+h)^2-1))

= ((-2hx-h^2))/((x^2-1)((x+h)^2-1)) and

(f(x+h)-f(x))/h=((-2x-h))/((x^2-1)((x+h)^2-1))

Now (df)/(dx)=Lt_(h->0)(f(x+h)-f(x))/h

= Lt_(h->0)((-2x-h))/((x^2-1)((x+h)^2-1))

= (-2x)/((x^2-1)(x^2-1))

= (-2x)/(x^2-1)^2