How do you find the derivative of 2sinx-tanx?

1 Answer
Dec 12, 2016

(d(2sinx -tanx))/(dx) = 2cos x -1/(cos^2x)

Explanation:

As the derivative of a function is a linear operator, we know that:

(d(f+g))/(dx) = (df)/(dx)+(dg)/(dx)

and

(d(lambda f))/(dx) = lambda(df)/(dx).

We have therefore:

(d(2sinx -tanx))/(dx) = 2(d(sinx))/(dx)-(d(tanx))/(dx) = 2cos x -1/(cos^2x)