How do you find the derivative of 3e^ (-3/x)?

1 Answer
Jun 29, 2016

= 9/x^2 e^ (-3/x)

Explanation:

d/dx 3e^ (-3/x)

a few thoughts first

d/dx alpha f(x) = alpha d/dx f(x)

and d/dx e^{g(x)} = g'(x) e^{g(x)) by the chain rule

so here we can say that

d/dx 3e^ (-3/x)
= 3 d/dx e^ (-3/x)
= 3 d/dx (- 3/x) e^ (-3/x)

= 3 d/dx (- 3x^{-1}) e^ (-3/x)

= 3 (-1) (- 3x^{-1-1}) e^ (-3/x) by the power rule

= 3 * 3x^{-2} e^ (-3/x)

= 9/x^2 e^ (-3/x)