Let y=4/sqrtxy=4√x
Replace yy with (y+Deltay) and x with (x+Deltax)
y=4/sqrtx
y+Deltay=4/(sqrt(x+Deltax))
Subtract y and its equivalent 4/sqrtx from both sides of the equation
y+Deltay-y=4/(sqrt(x+Deltax))-4/sqrtx
Deltay=4/(sqrt(x+Deltax))-4/sqrtx
Combine the fractions using the LCD=sqrt(x)*sqrt(x+Delta x)
Deltay=4/(sqrt(x+Deltax))-4/sqrtx
Deltay=(4sqrtx-4sqrt(x+Deltax))/(sqrtxsqrt(x+Deltax))
Factor out the 4
Deltay=(4(sqrtx-sqrt(x+Deltax)))/(sqrtxsqrt(x+Deltax))
Multiply the numerator and denominator by (sqrtx+sqrt(x+Deltax))
Deltay=(4(sqrtx-sqrt(x+Deltax)))/(sqrtxsqrt(x+Deltax))*((sqrtx+sqrt(x+Deltax)))/((sqrtx+sqrt(x+Deltax)))
Deltay=(4((sqrtx)^2-(sqrt(x+Deltax))^2))/((sqrtxsqrt(x+Deltax))*(sqrtx+sqrt(x+Deltax)))
Deltay=(4(x-(x+Deltax)))/((sqrtxsqrt(x+Deltax))*(sqrtx+sqrt(x+Deltax)))
Deltay=(4(x-x-Deltax))/((sqrtxsqrt(x+Deltax))*(sqrtx+sqrt(x+Deltax)))
Deltay=(4(-Deltax))/((sqrtxsqrt(x+Deltax))*(sqrtx+sqrt(x+Deltax)))
Divide both sides by Deltax
(Deltay)/(Deltax)=(4(-Deltax))/((sqrtxsqrt(x+Deltax))*(sqrtx+sqrt(x+Deltax)))*1/(Deltax)
(Deltay)/(Deltax)=(4(-cancel(Deltax)))/((sqrtxsqrt(x+Deltax))*(sqrtx+sqrt(x+Deltax)))*1/cancel(Deltax)
(Deltay)/(Deltax)=(4(-1))/((sqrtxsqrt(x+Deltax))*(sqrtx+sqrt(x+Deltax)))
Take the limit of both sides as Deltax rarr 0
dy/dx=lim_(Deltax rarr 0)(Deltay)/(Deltax)=lim_(Deltax rarr 0)(4(-1))/((sqrtxsqrt(x+Deltax))*(sqrtx+sqrt(x+Deltax)))
dy/dx=(4(-1))/((sqrtxsqrt(x+0))*(sqrtx+sqrt(x+0)))
dy/dx=(-4)/(sqrtxsqrtx*(sqrtx+sqrtx))
dy/dx=(-4)/(x*(2sqrtx))
dy/dx=(-2)/x^(3/2)
dy/dx=-2x^(-3/2)
God bless....I hope the explanation is useful.