How do you find the derivative of f(x) = 4/(sqrt(x))f(x)=4x using the limit definition?

1 Answer

dy/dx=-2x^(-3/2)dydx=2x32

Explanation:

Let y=4/sqrtxy=4x

Replace yy with (y+Deltay) and x with (x+Deltax)

y=4/sqrtx

y+Deltay=4/(sqrt(x+Deltax))

Subtract y and its equivalent 4/sqrtx from both sides of the equation

y+Deltay-y=4/(sqrt(x+Deltax))-4/sqrtx

Deltay=4/(sqrt(x+Deltax))-4/sqrtx

Combine the fractions using the LCD=sqrt(x)*sqrt(x+Delta x)

Deltay=4/(sqrt(x+Deltax))-4/sqrtx

Deltay=(4sqrtx-4sqrt(x+Deltax))/(sqrtxsqrt(x+Deltax))

Factor out the 4

Deltay=(4(sqrtx-sqrt(x+Deltax)))/(sqrtxsqrt(x+Deltax))

Multiply the numerator and denominator by (sqrtx+sqrt(x+Deltax))

Deltay=(4(sqrtx-sqrt(x+Deltax)))/(sqrtxsqrt(x+Deltax))*((sqrtx+sqrt(x+Deltax)))/((sqrtx+sqrt(x+Deltax)))

Deltay=(4((sqrtx)^2-(sqrt(x+Deltax))^2))/((sqrtxsqrt(x+Deltax))*(sqrtx+sqrt(x+Deltax)))

Deltay=(4(x-(x+Deltax)))/((sqrtxsqrt(x+Deltax))*(sqrtx+sqrt(x+Deltax)))

Deltay=(4(x-x-Deltax))/((sqrtxsqrt(x+Deltax))*(sqrtx+sqrt(x+Deltax)))

Deltay=(4(-Deltax))/((sqrtxsqrt(x+Deltax))*(sqrtx+sqrt(x+Deltax)))

Divide both sides by Deltax

(Deltay)/(Deltax)=(4(-Deltax))/((sqrtxsqrt(x+Deltax))*(sqrtx+sqrt(x+Deltax)))*1/(Deltax)

(Deltay)/(Deltax)=(4(-cancel(Deltax)))/((sqrtxsqrt(x+Deltax))*(sqrtx+sqrt(x+Deltax)))*1/cancel(Deltax)

(Deltay)/(Deltax)=(4(-1))/((sqrtxsqrt(x+Deltax))*(sqrtx+sqrt(x+Deltax)))

Take the limit of both sides as Deltax rarr 0

dy/dx=lim_(Deltax rarr 0)(Deltay)/(Deltax)=lim_(Deltax rarr 0)(4(-1))/((sqrtxsqrt(x+Deltax))*(sqrtx+sqrt(x+Deltax)))

dy/dx=(4(-1))/((sqrtxsqrt(x+0))*(sqrtx+sqrt(x+0)))

dy/dx=(-4)/(sqrtxsqrtx*(sqrtx+sqrtx))

dy/dx=(-4)/(x*(2sqrtx))

dy/dx=(-2)/x^(3/2)

dy/dx=-2x^(-3/2)

God bless....I hope the explanation is useful.