How do you find the derivative of 5^tanx?

1 Answer

d/dx(5^(tan x))=(5^tan x)*ln 5*sec^2 x

Explanation:

The formula to differentiate is

d/dx(a^u)=a^u*ln a*d/dx(u)

therefore

d/dx(5^tan x)=5^tanx*ln 5*d/dx(tan x)

d/dx(5^tan x)=5^tanx*ln 5*sec^2 x*(dx/dx)

d/dx(5^(tan x))=(5^tan x)*ln 5*sec^2 x

God bless....I hope the explanation is useful.