How do you find the derivative of (5-x)/x5xx using limits?

1 Answer
May 28, 2018

f'(x) = \frac{-5}{x^2}

Explanation:

The definition of derivative is

f'(x) = \lim_{x\to0}\frac{f(x+h)-f(x)}{h}

so, if f(x) = \frac{5-x}{x}, the definition leads to

f'(x) = \lim_{x\to0}\frac{\frac{5-x-h}{x+h}-\frac{5-x}{x}}{h}

Manipulate the numerator to get

\frac{5-x-h}{x+h}-\frac{5-x}{x} = \frac{(5-x-h)x - (5-x)(x+h)}{x(x+h)

=\frac{5x-x^2-hx - 5x+x^2-5h+hx}{x(x+h)} = \frac{-5h}{x(x+h)}

so,

f'(x) = \lim_{x\to0}\frac{\frac{5-x-h}{x+h}-\frac{5-x}{x}}{h} = \frac{-5h}{hx(x+h)} = \frac{-5}{x(x+h)}

When h \to 0, x+h \to x, so

f'(x) = \lim_{x\to0}\frac{-5}{x(x+h)} = \frac{-5}{x^2}