How do you find the derivative of #(5-x)/x# using limits?

1 Answer
May 28, 2018

#f'(x) = \frac{-5}{x^2}#

Explanation:

The definition of derivative is

#f'(x) = \lim_{x\to0}\frac{f(x+h)-f(x)}{h}#

so, if #f(x) = \frac{5-x}{x}#, the definition leads to

#f'(x) = \lim_{x\to0}\frac{\frac{5-x-h}{x+h}-\frac{5-x}{x}}{h}#

Manipulate the numerator to get

#\frac{5-x-h}{x+h}-\frac{5-x}{x} = \frac{(5-x-h)x - (5-x)(x+h)}{x(x+h)#

#=\frac{5x-x^2-hx - 5x+x^2-5h+hx}{x(x+h)} = \frac{-5h}{x(x+h)}#

so,

#f'(x) = \lim_{x\to0}\frac{\frac{5-x-h}{x+h}-\frac{5-x}{x}}{h} = \frac{-5h}{hx(x+h)} = \frac{-5}{x(x+h)}#

When #h \to 0#, #x+h \to x#, so

#f'(x) = \lim_{x\to0}\frac{-5}{x(x+h)} = \frac{-5}{x^2}#