How do you find the derivative of 5x arcsin(x)5xarcsin(x)?
1 Answer
Mar 3, 2017
Explanation:
color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(d/dx(arcsinx)=1/(sqrt(1-x^2)))color(white)(2/2)|)))
"let "f(x)=5xarcsin(x) differentiate f(x) using the
color(blue)"product rule"
"Given "f(x)=g(x).h(x)" then"
color(red)(bar(ul(|color(white)(2/2)color(black)(f'(x)=g(x)h'(x)+h(x)g'(x))color(white)(2/2)|)))
"here "g(x)=5xrArrg'(x)=5
"and "h(x)=arcsin(x)rArrh'(x)=1/(sqrt(1-x^2))
rArrf'(x)=5x. 1/(sqrt(1-x^2))+5arcsin(x)
rArrf'(x)=(5x)/(sqrt(1-x^2))+5arcsin(x)