How do you find the derivative of arccose^x?
1 Answer
Feb 18, 2017
Explanation:
Use the
color(blue)"standard derivative result"
color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(d/dx(arccosx)=-1/(sqrt(1-x^2)))color(white)(2/2)|))) differentiate using the
color(blue)("chain rule"
color(red)(bar(ul(|color(white)(2/2)color(black)(d/dx(arccos(f(x)))=-1/(sqrt(1-(f(x))^2)).f'(x))color(white)(2/2)|)))
rArrd/dx(arccose^x)
=-1/(sqrt(1-(e^x)^2))xxd/dx(e^x)
=-e^x/(sqrt(1-e^(2x))