How do you find the derivative of arcsin(1/sqrt(x^2+1))?

1 Answer
Apr 21, 2017

dy/dx=-1/(x^2+1); if x>0,

=1/(x^2+1); if x<0.

N.B.: y=arc sin(1/sqrt(x^2+1)), x inRR is not differentiable at x=0.

Explanation:

Let, y=arc sin (1/sqrt(x^2+1)), x in RR.

Let x=cottheta," so that, "theta in (0,pi), &, theta=arc cotx.

Observe that, the Range of cot fun. is RR, so we can take,

x=cottheta.

We will consider the following 2 Cases :

Case (1) : x>0.

x=cottheta, theta in (0,pi), and x>0 rArr theta in (0,pi/2).

Also, y=arc sin (1/sqrt(x^2+1))=arc sin (1/sqrt(cot^2theta+1))

=arc sin(1/csctheta)=arc sin(sintheta).

:. y=arc sin(sintheta), where, theta in (0,pi/2)sub(-pi/2,pi/2).

:.," by Defn. of "arc sin" fun., "y=theta=arc cotx; if x>0

:. dy/dx=d/dx arc cotx=-1/(x^2+1), if x>0.

Case (2) : x<0.

Here, because x<0, theta in (0,pi)-(0,pi/2)=(pi/2,pi), i.e.,

pi/2ltthetaltpi rArr -pi/2gt-thetagt-pi

rArr pi-pi/2>pi-theta>pi-pi, or, (pi-theta) in (-pi/2,0)

Also, sin(pi-theta)=sintheta.

Thus, y=arc sin(sintheta)=arc sin(sin(pi-theta),

where, (pi-theta) in (-pi/2,0) sub (-pi/2,pi/2).

Hence, by the Defn. of arc sin" fun., "y=pi-theta=pi-arc cotx, if x<0.

:., dy/dx=0-(-1/(x^2+1))=1/(x^2+1), if x<0.

Altogether, dy/dx=-1/(x^2+1); if x>0,

=1/(x^2+1); if x<0.

N.B.: From the above discussion, we conclude that,

y=arc sin(1/sqrt(x^2+1)), x inRR is not differentiable at x=0.

Enjoy Maths.!