How do you find the derivative of arcsin(2x1+x2)?

1 Answer
Jan 24, 2017

dydx=114x2(x2+1)2

Explanation:

y=sin1(2xx2+1)

siny=2x1+x2

dydx=1dxdy

dxdy=cosy

dydx=1cosy

sin2y+cos2y=1

cos2y=1sin2y

cosy=1sin2y=14x2(x2+1)2

dydx=114x2(x2+1)2