Let, y=arc sin((2x)/(1+x^2))=arc sinu, where, u=(2x)/(1+x^2).
Thus, y is a fun. of u, and u of x.
Therefore, by the Chain Rule,
dy/dx=dy/(du)*(du)/dx.................(ast).
Now, y=arc sin u rArr dy/(du)=1/sqrt(1-u^2).
=1/sqrt{1-((2x)/(1+x^2))^2}......[because, u=(2x)/(1+x^2)],
=1/sqrt{((1+x^2)^2-4x^2)/(1+x^2)^2},
=(1+x^2)/sqrt{(1+2x^2+x^4)-4x^2),
=(1+x^2)/sqrt(1-2x^2+x^4)=(1+x^2)/sqrt{(1-x^2)^2}.
Note that, here, the Square Root is, in fact, the
the Positive Square Root.
rArr dy/(du)=(1+x^2)/|1-x^2|............(ast^1).
Next, u=(2x)/(1+x^2) rArr (du)/dx=2d/dx{x/(1+x^2)},
=2[{(1+x^2)d/dx(x)-xd/dx(1+x^2)}]/(1+x^2)^2,..."[Quotient Rule},"
=[2{(1+x^2)(1)-x(2x)}]/(1+x^2)^2.
rArr (du)/dx=(2(1-x^2))/(1+x^2)^2................(ast^2).
Utilising (ast^1) & (ast^2) in (ast), we get,
dy/dx={(1+x^2)/|1-x^2|}{(2(1-x^2))/(1+x^2)^2}, i.e.,
dy/dx=(2/(1+x^2))*(1-x^2)/|1-x^2|.
Now, recall that, if, 1 < x^2, i.e., (1-x^2) <0, |1-x^2|=-(1-x^2).
:. dy/dx=-2/(1+x^2); if 1 lt x^2.
Similarly, if 1 gt x^2, then, dy/dx=2/(1+x^2).
Since, 1 < x^2 iff |x| < 1, we finally have,
dy/dx=2/(1+x^2); if |x| < 1, and,
dy/dx=-2/(1+x^2); if |x| > 1.
Enjoy Maths.!