How do you find the derivative of arcsin((2x)/(1+x^2))?

2 Answers
Jul 13, 2017

d/(dx)[arcsin((2x)/(1+x^2))] = color(blue)((2(1-x^2))/((x^2+1)(sqrt(1-(4x^2)/((x^2+1)^2)))

Explanation:

We're asked to find the derivative

d/(dx) [arcsin((2x)/(1+x^2))]

To do this, we can first use the chain rule, where

d/(dx) [arcsin((2x)/(x^2 + 1))] = d/(du)[arcsinu] (du)/(dx)

where

  • u = (2x)/(x^2 + 1)

  • d/(du) [arcsinu] = 1/(sqrt(1-u^2)):

= (d/(dx) [(2x)/(x^2+1)])/(sqrt(1-(4x^2)/((x^2+1)^2)))

= (2d/(dx)[x/(1+x^2)])/(sqrt(1-(4x^2)/((x^2+1)^2)))

We'll now use the quotient rule to differentiate the first quantity:

d/(dx) [u/v] = (v(du)/(dx) - u(dv)/(dx))/(v^2)

where

  • u = x

  • v = x^2 + 1

= (2((x^2+1)(d/(dx)[x]) - (x)(d/(dx)[x^2+1])))/((x^2+1)(sqrt(1-(4x^2)/((x^2+1)^2)))

= (2((x^2+1) - (x)(2x)))/((x^2+1)(sqrt(1-(4x^2))/((x^2+1)^2)))

uarruarr (using the power rule, the derivative of x is 1, and the derivative of x^2 + 1 is 2x)

= (2(x^2+1 - 2x^2))/((x^2+1)(sqrt(1-(4x^2))/((x^2+1)^2)))

= color(blue)((2(1-x^2))/((x^2+1)(sqrt(1-(4x^2)/((x^2+1)^2)))

Jul 14, 2017

dy/dx=2/(1+x^2); if |x| < 1, and,

dy/dx=-2/(1+x^2); if |x| > 1.

Explanation:

Let, y=arc sin((2x)/(1+x^2))=arc sinu, where, u=(2x)/(1+x^2).

Thus, y is a fun. of u, and u of x.

Therefore, by the Chain Rule,

dy/dx=dy/(du)*(du)/dx.................(ast).

Now, y=arc sin u rArr dy/(du)=1/sqrt(1-u^2).

=1/sqrt{1-((2x)/(1+x^2))^2}......[because, u=(2x)/(1+x^2)],

=1/sqrt{((1+x^2)^2-4x^2)/(1+x^2)^2},

=(1+x^2)/sqrt{(1+2x^2+x^4)-4x^2),

=(1+x^2)/sqrt(1-2x^2+x^4)=(1+x^2)/sqrt{(1-x^2)^2}.

Note that, here, the Square Root is, in fact, the

the Positive Square Root.

rArr dy/(du)=(1+x^2)/|1-x^2|............(ast^1).

Next, u=(2x)/(1+x^2) rArr (du)/dx=2d/dx{x/(1+x^2)},

=2[{(1+x^2)d/dx(x)-xd/dx(1+x^2)}]/(1+x^2)^2,..."[Quotient Rule},"

=[2{(1+x^2)(1)-x(2x)}]/(1+x^2)^2.

rArr (du)/dx=(2(1-x^2))/(1+x^2)^2................(ast^2).

Utilising (ast^1) & (ast^2) in (ast), we get,

dy/dx={(1+x^2)/|1-x^2|}{(2(1-x^2))/(1+x^2)^2}, i.e.,

dy/dx=(2/(1+x^2))*(1-x^2)/|1-x^2|.

Now, recall that, if, 1 < x^2, i.e., (1-x^2) <0, |1-x^2|=-(1-x^2).

:. dy/dx=-2/(1+x^2); if 1 lt x^2.

Similarly, if 1 gt x^2, then, dy/dx=2/(1+x^2).

Since, 1 < x^2 iff |x| < 1, we finally have,

dy/dx=2/(1+x^2); if |x| < 1, and,

dy/dx=-2/(1+x^2); if |x| > 1.

Enjoy Maths.!