How do you find the derivative of arcsin(3-x^2)?

1 Answer
Dec 25, 2016

The answer is =(-2x)/sqrt(1-(3-x^2))

Explanation:

We need

sin^2x+cos^2x=1

Let y=arcsin(3-x^2)

Then

siny=3-x^2

(siny)'=(3-x^2)'

cosydy/dx=-2x

dy/dx=(-2x)/(cosy)

But,

cos^2y=1-sin^2y=1-(3-x^2)

cosy=sqrt(1-(3-x^2))

:. dy/dx=(-2x)/sqrt(1-(3-x^2))